Preconditions¶
- graspologic.preconditions.check_argument_types(value, required_types, message)[source]¶
- Raises a TypeError if the provided - valueis not one of the- required_types- Parameters:
- valueAny
- The argument to test for valid type 
- required_typesUnion[type, Tuple[type, ...]]
- A type or a n-ary tuple of types to test for validity 
- messagestr
- The message to use as the body of the TypeError 
 
- Raises:
- TypeError if the type is not one of the required_types
 
- TypeError if the type is not one of the 
- Parameters:
- Return type:
- None 
 
- graspologic.preconditions.check_optional_argument_types(value, required_types, message)[source]¶
- Raises a TypeError if the provided - valueis not one of the- required_types, unless it is None. A None value is treated as a valid type.- Parameters:
- valueAny
- The argument to test for valid type 
- required_typesUnion[type, Tuple[type, ...]]
- A type or a n-ary tuple of types to test for validity 
- messagestr
- The message to use as the body of the TypeError 
 
- Raises:
- TypeError if the type is not one of the required_types, unless it is None
 
- TypeError if the type is not one of the 
- Parameters:
- Return type:
- None 
 
- graspologic.preconditions.check_argument(check, message)[source]¶
- Raises a ValueError if the provided check is false - >>> from graspologic import preconditions >>> x = 5 >>> preconditions.check_argument(x < 5, "x must be less than 5") Traceback (most recent call last): ... ValueError: x must be less than 5 - Parameters:
- valueAny
- The argument to test for valid type 
- required_typesUnion[type, Tuple[type, ...]]
- A type or a n-ary tuple of types to test for validity 
- messagestr
- The message to use as the body of the TypeError 
 
- Raises:
- TypeError if the type is not one of the required_types
 
- TypeError if the type is not one of the 
- Parameters:
- Return type:
- None 
 
- graspologic.preconditions.is_real_weighted(graph, weight_attribute='weight')[source]¶
- Checks every edge in - graphto ascertain whether it has:- a - weight_attributekey in the data dictionary for the edge
- if that - weight_attributevalue is a subclass of numbers.Real
 - If any edge fails this test, it returns - False, else- True- Parameters:
- graphUnion[nx.Graph, nx.DiGraph]
- The networkx graph to test 
- weight_attributestr (default="weight")
- The edge dictionary data attribute that holds the weight. Default is - weight.
 
- Returns:
- bool
- Trueif every edge has a numeric- weight_attributeweight,- Falseif any edge fails this test
 
- Parameters:
- Return type: