graspologic
0.0.0

Documentation

  • License
  • Install
    • Install the released version
    • Python package dependencies
    • Hardware requirements
    • OS Requirements
    • Testing
  • CLI
  • Contributing to graspologic
  • graspologic in the wild
    • Papers
    • Educational materials
    • Blog posts
  • Release Log
    • graspologic 3.3.0
    • graspologic 3.2.0
    • graspologic 3.1.0
    • graspologic 3.0.0
    • graspologic 2.0.1
    • graspologic 2.0.0
    • graspologic 1.0.0
    • graspologic 0.3.0
    • graspologic 0.2.0
    • graspologic 0.1.0
    • Previous GraSPy Releases
      • GraSPy Release Log
  • Reference
    • Aligning
      • Sign flips
      • Orthogonal Procrustes
      • Seedless Procrustes
    • Clustering
      • K-Means Clustering
      • Gaussian Mixture Models Clustering
      • Hierarchical Clustering
    • Datasets
      • Drosophila larval mushroom body
      • Duke mouse whole-brain connectomes
    • Embedding
      • Decomposition
      • Single graph embedding
      • Multiple graph embedding
      • Dissimilarity graph embedding
    • Inference
      • Two-graph hypothesis testing
    • Layouts
      • NodePosition
      • Automatic Graph Layout
      • Colors
      • Rendering
    • Matching
      • Graph Matching
    • Models
      • Erdos-Reyni models
      • Stochastic block models
      • Latent position models
      • Edge swapping (configuration models)
    • Nomination
      • Spectral Vertex Nomination
      • Vertex Nomination via SGM
    • Partition
      • Modularity and Component Modularity
      • Leiden and Hierarchical Leiden
    • Preconditions
      • check_argument_types()
      • check_optional_argument_types()
      • check_argument()
      • is_real_weighted()
    • Pipeline
      • GraphBuilder
      • Embed
    • Plotting
      • Heatmap
      • Gridplot
      • Pairplot
      • Degreeplot
      • Edgeplot
      • Screeplot
      • Adjplot
      • Matrixplot
    • Preprocessing
      • Graph Cuts
    • Simulations
      • er_np()
      • er_nm()
      • sbm()
      • rdpg()
      • er_corr()
      • sbm_corr()
      • rdpg_corr()
      • mmsbm()
    • Subgraph
      • Signal-Subgraph Estimators
    • Utility
      • Transformations
      • Connected Components
      • IO
      • Other
  • Tutorials
    • Models
      • Random Graph Models
      • Degree Preserving Edge Swaps
    • Simulations
      • Erdos-Renyi (ER) Model
      • Stochastic Block Model (SBM)
      • Mixed Membership Stochastic Blockmodel (MMSBM)
      • Random Dot Product Graph (RDPG) Model
      • Correlated Graph Pairs
      • Correlated Random Dot Product Graph (RDPG) Graph Pair
    • Clustering
      • Automatic Gaussian Mixture Modeling
      • K-Means Clustering
    • Embedding
      • Adjacency Spectral Embed
      • Out-of-Sample (OOS) Embedding
      • Covariate-Assisted Embedding
      • Multiple Adjacency Spectral Embedding (MASE)
      • Omnibus Embedding for Multiple Graphs
    • Inference
      • Testing Symmetry of Two Networks with the Density Test
      • Performing the Density Test
      • Group connection test
      • Latent Position Two-Graph Testing
      • Latent Distribution Two-Graph Testing
    • Plotting
      • Heatmap: Visualizing a Graph
      • Gridplot: Visualize Multiple Graphs
      • Pairplot: Visualizing High Dimensional Data
      • Matrixplot and Adjplot: Visualize and sort matrices with metadata
      • Pairplot with GMM: Visualizing High Dimensional Data and Clustering
      • Networkplot: Visualizing 2D Layouts
    • Matching
      • Introduction to Graph Matching
      • Seeded Graph Matching (SGM)
      • Padded Graph Matching
    • Subgraph
      • Signal Subgraph Estimators
    • Vertex Nomination
      • Spectral Vertex Nomination
      • Nomination via SGM
    • Aligning
      • Aligning
    • Connectomics
      • Methods for Multiscale Comparative Connectomics

Useful Links

  • graspologic @ GitHub
  • graspologic @ PyPI
  • Issue Tracker
graspologic
  • Search


© Copyright 2020.

Built with Sphinx using a theme provided by Read the Docs.